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Most of the wave resistance of blunt bow displacement ships is caused by the 
bow-breaking wave. A theoretical study of the phenomenon for the two- 
dimensional steady flow past a blunt body of semi-infinite length is presented. 
The exact equations of free-surface gravity flow are solved approximately by 
two perturbation expansions. The small Froude number solution, representing 
the flow beneath an unbroken free surface before the body, is carried out to 
second order. The breaking of the free surface is assumed to be related to a 
local Taylor instability, and the application of the stability criterion determines 
the value of the critical Froude number which characterizes breaking. The high 
Froude number solution is based on the model of a jet detaching from the bow 
and not returning to the flow field. The outer expansion of the equations yields 
the linearized gravity flow equations, which are solved by the Wiener-Hopf 
technique. The inner expansion gives a nonlinear gravity-free flow in the vicinity 
of the bow a t  zero order. The matching of the inner and outer expansions pro- 
vides the jet thickness as well as the associated drag. 

1. Introduction 
The conventional linearized theory of ship waves is based on a first-order 

perturbation expansion in which the length Froude number Pr, is of order one, 
while the beam Froude number (thin ships) and/or the draft Froude number 
Pr, (slender or flat ships) tend to infinity. While the theory is in fair agreement 
with laboratory results in the case of schematical fine shapes (e.g. Weinblum, 
Kendrick & Todd 1952) it is of a qualitative value a t  best in the case of actual 
hulls. To improve the accuracy of the linearized solutions, second-order nonlinear 
effects have been considered either with the free-surface condition or with the 
body condition (e.g. Tuck 1965; Eggers 1966). 

A different nonlinear effect, overlooked until recently for the case of displace- 
ment ships, is that associated with the bow bluntness. It is well known from the 
theory of inviscid flow past aerofoils or slender bodies (Van Dyke 1964) that the 
linearized solution is singular near a blunt nose in the stagnation region. The 
singularity may be removed by an inner expansion in which the length scale is 
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a local one associated with the nose bluntness. I n  the case of a free-surface flow 
with gravity the phenomenon is more complex. The pressure rise in the stagna- 
tion region is associated with the free-surface rise and, henceforth, with a change 
in the boundary of the flow domain. 

Our analysis suggests the following picture of the change of the steady flow 
pattern near a blunt bow as the Froude number increases (figure 1). (i) At small 
P y T  (Fr,  = U'/(g/T')4 (where U' is the velocity at infinity, T' is the draft), 
see figure l(a), the free surface is smooth and stable, being horizontal a t  the 
stagnation point. The bow drag is zero in this range. (ii) At a certain critical 
Fr,, the free surface becomes unstable and breaks. We assume that the instability 
is of the type studied by Taylor (1950) : in the region of convexity of the free 
surface the centrifugal aceeleration (directed outwards) offsets the gravity 
acceleration when the critical condition is attained and locally the total normal 
acceleration vanishes. The Taylor local instability criterion may be also stated 
in terms of the pressure gradient: a t  Froude numbers larger than the critical 
one the pressure gradient normal to the free surface is negative, i.e. pressures 
smaller than the atmospheric prevail in the water body. (iii) At larger PrT a 
stable breaking wave (figure l ( b ) )  develops in front of the bow. Owing to the 
energy loss in the breaking wave the free-surface rise near the body is smaller 
than the ideal rise and the body experiences a genuine drag force. (iv) At high 
Pr, the rise of the bow-returning jet is relatively high and the flow becomes 
somehow similar to that encountered in planing problems. With the neglect of 
the returning jet, the bow drag becomes equal to the jet momentum loss. 
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FIGURE 1. The changes in the flow regime associated with increasing Froude number FrT. 
(a)  Smooth free surface, (b)  breaking wave, (c) jet. 

A systematic experimental confirmation of the role played by the bow blunt- 
ness of displacement ships has been provided recently by Baba (1969). From 
towing tank tests with three geosims of a tanker (Cb = 0.77) it was found that in 
ballast conditions at Pr,, z 1.2 a breaking wave appears before the bow. At the 
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maximum Fr, tests (FrL = U’/(gL’)*  = 0.24, Fr, = 1.7) the energy dissipated 
in the breaking wave contributed 18 per cent of the total resistance, while the 
energy radiated by waves gave only 6 per cent. Baba has suggested a two- 
dimensional representation of the breaking wave of this experiment, as if it 
were uniform and normal to the bow, and has estimated its equivalent length 
as roughly half the beam. The drag coefficient per unit length, corresponding to 
a two-dimensional flow across the breaking wave is C, = D’/&Ur2T’ = 0.08, 
where D’ is the drag force, for Pr, = 1.7 (Baba 1969, 3 7.3). With the develop- 
ment of large tankers, as well as large and rapid cargo ships, the study of the 
bow free-surface nonlinear effect therefore becomes particularly important. 

We present here some studies and results which are reported in detail in two 
reports (Dagan & Tulin 1969, 1970). In  some cases the present results correct 
and supplant the earlier work. In  this first stage we have attacked the two- 
dimensional problem of steady free-surface flow of an inviscid liquid past a 
blunt body of semi-infinite length. The two-dimensional study is a necessary 
step in the development of a theory for three-dimensional bows since it provides 
a valuable gain in insight a t  the expense of relatively simple computations. 
Moreover, it gives an estimate of the bow drag of flat ships and opens the way 
to more realistic computations by further approximations. 

Taking the length as semi-infinite is very useful from a mathematical point 
of view and it is equivalent to the limit Fr, + 0. This assumption is entirely 
justified for the small Fr, considered here and for determination of the bow flow, 
which is not sensibly influenced by the trailing edge condition. We are assuming 
in fact that the location of the body beneath the unperturbed upstream level is 
determined entirely by the buoyancy, while the dynamical effects are localized 
at the edges. Here lies the main difference between the solution presented in the 
present work for high Fr,  and the solutions of the planing plate (Squire 1957) 
in which the body position is not assigned a pr ior i .  

The flow problem, even in the two-dimensional case, is still difficult because 
of the nonlinearity of the free-surface condition. For this reason we consider 
here two asymptotic expansions of the exact equations of steady flow in the 
only dimensionless parameter of the problem: Fr,. The small FrT solution covers 
the regime of figure l (a) ,  including the derivation of the breaking condition. 
The second, high Fr,, solution applies to the case shown in figure 1 (c) and permits 
the computation of the bow drag. The intermediate case (figure 1 ( b ) )  is left for 
future studies. 

2. The small Froude number solution 
2.1. Free-surface gravity $ow near a stagnation po in t  

We consider first the exact solution for the angle between the free surface and a 
rigid boundary at a stagnation point (figure 2) .  In the symmetrical case 
(A, =“-A,) the classical Stokes result (Wehausen & Laitone 1960) requires 
that h = A, - A, = 3”. This result will now be extended for other possible angles 
between A 0  and OB. 

34-2 
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In  the vicinity of 0 ( x  = 0, figure 2 (a)) we assume that the x plane is mapped 
on the complex potential plane f (figure 2 ( b ) )  by 

x = a e-% f + R( f ), (1)  

AOB obviously being a streamline, f = f 'g/Ut3, f' being the complex potential. 
The constant a is real and positive so that A 0  is mapped on the positive $ axis. 

P 

A 

PICURE 2.  Free-surface flow in the vicinity of a stagnation point. 
(a )  Complex z plane, z = z + iy, ( b )  complex f plane, f = q5 + i$. 

The function R, which has to vanish at 0, is assumed to be of the form 

(2 )  R = P e i r f ~  

in the vicinity of 0, with 13, g and y real numbers. Obviously y > A/n,  otherwise 
the mapping of the corner AOB is not ensured. 

In  order to apply the Bernoulli equation along A 0  let us determine y and 
q 2  = u2+ 112 as functions of $. From (1) and (2) we obtain on A 0  (f = $) 

(3) 

(4) 

( 5 )  

(6) 

y = - a sin A, +/?sin ~ $ 7 ,  

x = 01 cos A, $h/n + p cos a$y, 

l / q 2  = X?$ + yfg = (aA/n)2$2(+1)+ B(a/?Ay/n) cos (A, + a) $(A/=+r-2). 

4 2  = (n/Aa)2$-2(h'"-l) [l- 2(7rPy/.A) @-A'= cos (A, + a) + . ..I. 
By expanding ( 5 )  near $ = 0, q2 is found to be 

Substituting y and q2 into Bernoulli's equation and retaining terms of order 
$(2-hjn) or $2 a t  most, we get 

The identity (7) yields the following relationships between A, and A :  (i) If 
A, + 0, the f i s t  and third terms of (7)  give 

A = gn, L(z) = gsinh,. 
2 a  ha 

This is Stokes's classical result. Obviously A, 2 in, for otherwise a < 0 and the 
free surface descends towards a stagnation point which is in contradiction with 
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(9) 

the Bernoulli equation. (ii) If A, = 0 the first term of (7)  vanishes and the re- 
maining terms give 

Since y > h/n- equation (9) shows that h < 5n. A particular case is that of y = 1, 
which makes the function R analytic. In this case (9) gives h = Qn-, i.e. the con- 
fluence between a horizontal free surface and a vertical wall. 

In  conclusion, there are two possible angles between a free surface and a rigid 
wall a t  the stagnation point: (i) If the wall is inclined with respect to the hori- 
zontal a t  an angle larger than En- (3n- < A, < j?) the free surface intersects the 
wall at $n- (A = En-). (ii) If the wall is inclined at  less that 57r ( A  < in) the free 
surface is horizontal (A, = 0). In  the latter case the equation of the free surface 

(10) 
near the origin is 

y = /3 sin c(x/a)2(njA-1) 

and the curvature of the free surface becomes infinite for A > Qn- and x + 0. 
The free surface is, however, stable since the dynamical part of the normal 
pressure gradient, given by 

y = - 2(A/n-- 1). 

appy  = p(u2/r)  = pq2 d2y/dX2, 

vanishes since (6) and (10) show that 

a P p y  x2(2n~h-3). (11) 

Hence the pressure is hydrostatically distributed in the vicinity of the stagnation 
point. 

2.2. Small Fr, perturbation expansion 

We consider the flow past a semi-infinite body (figure 3) and an expansion near 
the state of rest, for small Fr,. Referring, the; variables to T' and (gT'p and 
expanding as follows: 

F ( 2 )  = @ +iY = FrTFl(Z) +Fr$F2(Z) +FrgF!(Z) + . . ., (12) 

W ( 2 )  = U-iV  = Fr,W,(B)+Pr$W,(Z)+Fr~W,(Z)+ ..., (13) 

N ( X )  = Fr2TNl(X)+~r~N2(X)+Fr6TN3(X)+ ..., (14) 

where F = f ' / g i T % ;  W = w' / (gT)Q,  w' being the complex velocity; N = f / T ' ,  
7' being the free-surface elevation; 2 = zUJ2/gT'. We thus obtain from the exact 
free-surface conditions (Bernoulli equation and the streamline condition) and 
the body boundary condition the following equations. 

At first order (figure 3 (b) )  
Y , = O  (ASBA), (15) 

q =  1 (X+-Co),  (16) 

i.e. a flow beneath a rigid wall replacing the free surface at  its unperturbed 
elevation. In  addition 

Nl = g(1- u;) ( X  < 0, Y = 0). (17) 

At second order Y2 = - U1N, (AS,  x < 0, Y = O),  (18) 

Y2 = 0 (SBA,X > 0, Y = H ( X ) ) ,  (19) 

N2=-UlU2  ( X < O , Y = O ) ;  (20) 
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at third order 
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Y3 = - (u1q + U,Nl) (AX, x < 0, Y = O), (21)  
Y3 = 0 (8BA,X > 0, Y = H ( X ) ) ,  (22) 

N3= - U l U ~ - ~ U z , - ~ U , ( U l ~ ~ ~ , ~ - 2 ~ l ~ , 2 - N ~ U ~ , , , ~ )  ( X  < 0 ,  Y = 0) ,  (23) 

where H = h’/T’, h’(x‘) being a function defining the body shape. 

._--- 

L- + - - - 7- -(y \ , -7---- T ‘ \  - - - ,A ?--;;[ .~ ---I--- 1 
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FIGURE 3. Small FrT flow past a box-like body. (a )  The physical plane, z’ = x’+ iy’; ( b )  the 
linearized dimensionless physical variables, 2 = X S i Y ;  (c) the auxiliary 6 plane, 
6 = E+i/.L. 

At second and third order the flow is generated by source distributions along 
the degenerate free surface (equations (18) and (21)). It is easy to ascertain that 
both YP, and Y3 are zero at infinity and a t  the origin, such that the total source 
flux is zero. The drag is also zero at  any order. 

2.3.  Xolution for a rectangular body 

For the sake of simplicity we have solved the equations, to second order, for the 
box-like body of figure 3(a). The solution of the first-order approximation is 
obtained in terms of the auxiliary variable < as 

w, = [(5+ 1)/(6- l)l4 4 = 5/n, (24) 

Z = (1/n)(52-l)H+(l/n)In[(~2-1)9-5]. ( 2 5 )  

where the mapping of the linearized 2 plane (figure 3 ( b ) )  onto the <plane (figure 
3 (e)) is given by 

Hence, from (17 )  we have 

For the second-order approximation (equation (18)) we get 

Nl = 1 / ( 1 - 5 )  (5 < -1). 
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If Y 2  is given along the real 5 axis (equations (19) and (29)) then by Cauchy in- 

U, and N, as functions of [ are easily found from (20) and (28) (for details 
see Dagan & Tulin 1969). The shape of the free surface a t  second order is given 
in figure 4. The first-order solution (17) gives the exact values of N a t  infinity and 
at the stagnation point. A detailed check shows that not only N, (equation (20)) 
but also N3 (equation (23)) vanish at these two anchor points, the higher order 
approximations correcting only the shape of the free surface in the intermediate 
range. The small PrT expansion (12)-( 14) is consistent’ and seems to be uniformly 
convergent (at least at third order). It differs from that suggested by Ogilvie 
(1968) who obtained waves far behind a submerged body. Figure 4 shows that 
the free-surface profile becomes steep as Fr,  increases. We can expect, therefore, 
that at  a certain critical BrT it will become unstable. 
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FIGURE 4. The free-surface shape in front of a rectangular body, with N ( X )  as in (14). 

2.4. The stability of the free surface 

According to the Taylor local criterion (see 3 1) the free surface becomes unstable 
at the point where the normal pressure gradient vanishes, i.e. for 

(29) 

( 30) 

ap‘j2n’ = -pg( l  +r:2,.)-t+p(u’2+v12)/r’ = o 

appn =- (Uz+ V z ) N , X X ( l + N , x ) - ~ - ( l + N ; X ) - +  = 0. 

or, in dimensionless variables, 

The pressure vanishes in the region of convexity of the free surface (N,xx  < 0). 
By the expansion of (30) along Y = N ( X )  the stability condition becomes 
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where only the first two terms of the expansion contribute up to the order Fr$  
in the pressure gradient expression. Taylor's marginal stability is reached for 
the value of FrT which satisfies (31) equal to zero. This value has been found 
to be Fr, N 1.5 and the point of instability is a t  X = 0.3. 

Although the expression for the pressure gradient can hardly be expected to 
converge rapidly a t  such a high FrT, the result is of the order of magnitude of 
that found by Baba (1969) and would seem to confirm the mechanism of free- 
surface disruption assumed here. The effect is nonlinear since only when the 
second-order term is taken into account does the steepening of the free surface 
depend strongly on Fr,. There is no bow drag in the small Frl. limit. The present 
method suggests a possible way of determining the influence of the bow shape 
on the breaking wave inception and therefore serves to select shapes which re- 
tard the phenomenon. 

3. The high Froude number solution 
3.1. The exact equations 

I n  this case we adopt the jet model (figures 1 (c) and 5 (a)) for the representation 
of the bow momentum loss. The returning jet is neglected, since the jet thickness 
turns out to be a second-order quantity. Using a procedure followed in similar 
problems in the past (Tulin 1965; Wu 1967) we map the flow domain onto the 
complex potential plane f = q5 + ill. (figure 5 ( b ) ) .  The variables are outer variables 
and are made dimensionless by referring them to U' and Ut2/g. For convenience 
we map f on the auxiliary half 5 plane (figure 5 (c)) by the transformation 

df /d< = 1 -t/n< ( 32) 

where t is the dimensionless jet thickness (actual jet thickness t' = tU'2/g). 

here for convenience of reference, are as follows 
The exact boundary conditions for the complex velocity w (w = w'/U'), given 

Re ( w2w- f i w  
1. - tlnC (33) 

argw = -arctgdh/dx ( S J ) ,  (34) 

arg w = arc tg dhldx (SBA), (35') 

w + l  (<+-a), (36) 

where y = h(x) is the profile equation ( h  = h'g/U'2). The physical plane is mapped 
on the 5 plane by 

d5. (37) 
- w  w 

3.2. Outer expansion 
We consider now a perturbation expansion near the state of uniform flow with 
E = l /Fr$ as a small parameter. By definition h(x) = eh,(x). We also assume that 
t = o(1) and we anticipate a later result by estimating t = 0($). Hence, for the 
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outer observer the body shrinks to the line y = 0 and the points S , O ,  .I (figmc 5 ( c ) )  
collapse into the origin of the 5 plane when E + 0. With 

w = 1 + S,(c) w&) + S&) w&) + ... (38) 

we have at zero ordcr .z c, (391 

FIGURE 5. Free-surface flow past a semi-infinite body (high FTT).  ( a )  The physical plano, 
z’ = x’ + iy‘ (2’ = Z U ’ ~ / ~ )  ; ( b )  the complox potential plane, f = 6 +it’ ; (c) the auxiliary < plane, { = <+ip. 

while at first order we obtain from (33)-( 37) 

Re (dw,/EE~+iw,) = 0 (c  < 0, p = 0), 

w l = o  (5 t-x). 

5 
z = c-c[ w,d{. 

--m 

where 6, = e, as a result of (35).  
Along the body (f > 0, /i = 0 )  equation (42)  gives 

z == 5, hl(x) = -1m 

(42) 

(43) 
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Hence, with kl(<) = wldc we finally obtain from the integration of (40) Jf m 

Equations (44) and (45) permit the computation of w,, which in turn yields z 
from (42). 

By similar reasoning we arrive at  the following equations for the second order: 

Re (dw,/dc+iw,) = -Re [(wl+ 2E,) dw,/d5] (5 < 0, ,U = 0), (46) 

I m w , = - ~ I m w ~  ( < > O , , u = O ) ,  (47) 

--f 0 (5 +--a), (48) 
where 6, = e2. 

To solve at first order we adopt a procedure similar to  that followed in planing 
problems (Squire 1957), i.e. we replace the body by an unknown pressure dis- 
tribution gl([) along p = 0, 5 > 0 and determine g, such that (44) and (45) are 
satisfied. 

The flow due to a pressure force of unit strength acting on the free surface at  
5 = v is represented by the linearized potential (Stoker 1957) 

i 
m(5) = 77 -e-i(c-v)E[i(5- v)], (49) 

where 

and the integration in (50) is carried out along a path entirely lying in the lower 
half u plane. The singularity of m near t: = v is of a vortex type, so that in fact 
we have replaced the body by a vortex distribution. 

The function k,(5) has, therefore, the expression 

k,(<) = 1 J” e-i(c-v) ~ [ i ( < -  v)l  g,(v) dv (51) 
= o  

and satisfies (44). Equation (45) now becomes, with the aid of (51), 

~ ~ g l R e j e - i ( ~ - ~ ) E [ i ( ~ - v ) ] J g l ( v ) d v  = o  = -hl(<) (5 > 0). (52 )  

The solution of this integral equation gives g1(6), which in turn permits the 
determination of Icl(5) and wl(c) = dlc,/dQ Equation (52), with a displacement 
kernel, may be solved by the Wiener-Hopf technique. In  fact, an almost identical 
equation has been studied by Carrier, Krook & Pearson (1966, p. 397). By 
applying the integral Fourier transform to (52) we obtain 

1 
M ( 4  G l V )  = & j p i ( h )  +H+(4l* (53) 

In the appendix we prove that 
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and since this is exactly the transform of the kernel considered by Carrier 
et. a1 (1966, p. 396) we at  once adopt their factorization 

1 1 l e x p [ - l S  -du ] .  lnu  
&!-(A) = -~ 

(2n)i (1 -1- A ) z  T i  0 1-u2 

FIGURE 6. Two-dimensional flow past a blunt body (high FTT). ( a )  The physical planc; 
( b )  the body boundary condition in tho outer approximation with 

h,(z) = - ~ + ( l - u ) ( e - ~ ' ~ - l )  for p =  O , [ =  0;  

(c) the body boundtwg condition in the zeroth-order inner approximation, p = [+ i@, 
symbols with a tilde as definod in (67).  

The separation of (53) may be now accomplished provided that we select rt 

given body shape, i.e. the function h,(z). We limit ourselves here to  the case of 
a blunt body (figure 6 (a)) ,  with h,(z) as follows : 

h,(z) = -aaz/zj (0 < 2 < If), (57) 

h,(x) = - u + ( l  -a)[e-("-W-l] (x > l f ) ,  (58) 
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where a is the (dimensionless) draft at  the bow of a completely blunt shape, 
0 < a < 1; 1 = l‘glU’, 1, = 1,glU‘ (1‘ and 1; being the characteristic and forebody 
lengths respectively) and 1 = O(1). The dimensionless forebody length lf is 
assumed to be of order E ,  so that in the limit process E --f 0 the angle /3 (the angle 
at  the bow) is kept fixed. Under these conditions, in the outer limit the body 
degenerates at first order in a box-like body, with equation 

h,(x) =-u+(( l -u) (e-”~z- l )  (x > 0). (59) 

The shape of figure 6 has been selected for the sake of simplicity. Any shape 
with a forebody of order e (completely blunt) and 1 = O( 1) yields the same solu- 
tion in the vicinity of the bow. When a = 0 the bluntness disappears and the 
shape is fine, while for u = 1 the aftbody is flat. 

From (59) we obtain 

and from the separation of (53 )  

Gl+(A) =- 1 cliA{)/M+(A), (61) 

where the last term, representing eigensolutions, results from the application of 
Liouville’s theorem, cli being arbitrary. 

Equation (61) cannot be inverted exactly, because of the integral appearing 
in H+(h), but the inversion can be carried out for large h by expanding M+(h).  
After carrying out this process (see Dagan & Tulin 1970) we arrive at the following 
expression for ql(Q in the vicinity of the origin : 

where the dli are constants related in a unique manner to cli. From (62) we 
obtain 

which is the central result of our analysis. 

was found to be 
The expression of the second-order solution, satisfying (22)) (23) and (32), 

(64) 
a2 dl, 

w2(5) = F<+ 5) + x0 p. (5  -+ 0). 

Summarizing the results obtained so far, we have 

(66) 
t EU €2 1 t +..., dz - = 1-s,w,-62(w2-w;)--+... = l + y + - - - -  

d 5  4 (,S)Z 2,5 .< 
where the eigensolutions have been omitted because they yield infinite forces. 
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The velocity has the familiar square-root singularity a t  first order and a source 
siiigularity at  second order. The free surface is continuous at  first order, while a t  
second order it rises at  infinity. The eigensolutions of the problem, which represent 
in fact the linearized solutions of a free-surface flow past a flat horizontal plate, 
as well as the flow details near the bow will be subsequently determined with 
the aid of an inner solution. It is worth while to mention here that only at  second 
order are the details of the adopted model (i.e. the jet) manifested in the 
solution. Any other flow model will produce an identical first-order solution. 

3.3. The inner expansion and its matching with the outer solution 

We now stretch the co-ordinates and adopt the following inner variables : 

[ = C/E ,  iij = W, x" = Z ~ C ,  tl = t / C ,  6 = b/Ey (67) 

where b is the outer co-ordinate of a point B in the 5 plane, and expand the 
function fi = In (1/8) = r + i0 in a perturbation series 

C? = f i o + A l ( ~ ) f i l + . . .  . (68) 

For the body of figure 6 ( a )  we obtain from the inner expansion of the exact 
equations the boundary conditions for fi, specified in figure 6 (c)  which represent 
a noiilinear free-surface flow without gravity (for details see Dagan & Tulin 
1970). The conditions at infinity are provided by matching with the outer 
expansion. Only in the case of the straight bow of figure 6 (a)  are the inner con- 
ditions so simple. In  the general case we have to solve an integral equation for 6 
(Wu 1967) or start with a given O ( E ) .  

The solution of Go is readily found in the form 

where the exponential represents the eigensolutions of the problem, the JOi being 
arbitrary constants. Expanding 8, for large [we obtain 

According to our estimate t' = 0 ( E )  and 6 = 0 (1) .  To match Go in (10) with 
w in (65) we have therefore to assume that the term in 64 in (70) has to be 
absorbed by the eigeiisolution or has to generate in the outer solution a new 
term of order d. In  any case the matching requires 

8 = lea2 , i.e. t = $e2a2. (71) 

B = $e2a2(1+cosP), ( 72) 

The bow drag associated with the momentum loss in the jet is therefore 

where D = D'IpU'2T' and D' is the drag. 
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To roughly compare the result of (72) with Baba's findings, we assume that 
and a = 1. For 

(73) 

the bow in his experiments is completely blunt with p = 

B = l/Pr2, z 0.34 we have 
C, = 2.D = 0.17, 

which is roughly twice as large as the value estimated by Baba. At  this stage 
it is diEcult to find which of the following factors explain this discrepancy: 
the asymptotic character of the solution, the lack of details on the bow shape or 
the crude representation by Baba of a three-dimensional flow by a two- 
dimensional equivalent. Future experiments and theoretical developments will 
give the answer to this question. 

The method presented here is applicable to other bow shapes, like blunt round 
bows. In  this latter case the bow drag appears at higher order than in the com- 
pletely blunt case. The extension to other shapes, as well as to three-dimensional 
bodies, is left for future studies. 

4. Conclusions 
Theoretical models of breaking wave inception and of tt free-surface bow drag 

have been derived for the case of a two-dimensional free-surface gravity flow 
past a blunt body. In  both cases the effects are nonlinear and are related to the 
important role played by the inertial term of the Bernoulli equation in the 
vicinity of the bow. The results lead to a drag force about twice as large as that 
estimated by Baba (1969), but an improved verification has to be done by 
carrying out two-dimensional experiments. 

The present work has been supported by O.N.R. through contract Nonr- 
3349(0)0 Nr 062-266 with Hydronautics, Inc. 

Appendix. The Fourier transform of the kernel of equation (52) 
The kernel has the following expression : 

(A 1) 
1 

m(5) = - Rereit E(i5) ] ,  
lr 

where E( i [ )  is defined by (50). With u = Efis the kernel becomes 

the integration contour being transferred from the lower half plane to the 
imaginary axis of the 5 plane, leaving the pole s = i5 on the right. By closing the 
integration contour in the first quadrant we obtain 

and 
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Hence in both cases 

The Fourier transform of m(&) is given by 

which by the residue theorem gives 
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